题目内容
【题目】某校高三(1)班在一次语文测试结束后,发现同学们在背诵内容方面失分较为严重.为了提升背诵效果,班主任倡议大家在早、晚读时间站起来大声诵读,为了解同学们对站起来大声诵读的态度,对全班50名同学进行调查,将调查结果进行整理后制成下表:
考试分数 | ||||||
频数 | 5 | 10 | 15 | 5 | 10 | 5 |
赞成人数 | 4 | 6 | 9 | 3 | 6 | 4 |
(1)欲使测试优秀率为30%,则优秀分数线应定为多少分?
(2)依据第1问的结果及样本数据研究是否赞成站起来大声诵读的态度与考试成绩是否优秀的关系,列出2×2列联表,并判断是否有90%的把握认为赞成与否的态度与成绩是否优秀有关系.
参考公式及数据:,.
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)125分(2)列联表见解析;没有90%的把握认为赞成与否的态度与成绩是否优秀有关系
【解析】
(1)根据题意,测试的优秀率为30%,所以测试成绩优秀的人数为,即可得答案;
(2)完成列联表,再代入卡方系数计算公式,即可得答案.
(1)因为测试的优秀率为30%,所以测试成绩优秀的人数为,
所以优秀分数线应定为125分.
(2)由(1)知,测试成绩优秀的学生有人,其中“赞成的”有10人;测试成绩不优秀的学生有人,其中“赞成的”有22人.
2×2列联表如下:
赞成 | 不赞成 | 合计 | |
优秀 | 10 | 5 | 15 |
不优秀 | 22 | 13 | 35 |
合计 | 32 | 18 | 50 |
因此,没有90%的把握认为赞成与否的态度与成绩是否优秀有关系.
【题目】某公司人数众多为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况,按照男员工和女员工的比例分层抽样,得到名员工的月使用流量(单位:)的数据,其频率分布直方图如图所示.
(1)求的值,并估计这名员工月使用流量的平均值(同一组中的数据用中点值代表;
(2)若将月使用流量在以上(含)的员工称为“手机营销达人”,填写下面的列联表,能否有超过的把握认为“成为手机营销达人与员工的性别有关”;
男员工 | 女员工 | 合计 | |
手机营销达人 | 5 | ||
非手机营销达人 | |||
合计 | 200/span> |
参考公式及数据:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(3)若这名员工中有名男员工每月使用流量在,从每月使用流量在的员工中随机抽取名进行问卷调查,记女员工的人数为,求的分布列和数学期望.