题目内容

20.长为a的正六边形ABCDEF在平面α内,过A点作PA⊥α,PA=a,则P到CD的距离为2a,P到BC的距离为$\frac{\sqrt{7}}{2}$a.

分析 先证明PC垂直于CD,然后在直角三角形PAC中利用勾股定理求出PC即可;同理先证明PQ垂直于BC,然后在直角三角形PAQ中利用勾股定理求出PQ即可求出所求.

解答 解:连接AC,CD⊥AC
∵PA⊥平面a,CD?平面a
∴PA⊥CD,而PA∩AC=A
∴CD⊥平面PAC,则PC⊥CD
在直角三角形PAC中,AC=$\sqrt{3}$a,PA=a,
根据勾股定理可知PC=2a
即P到CD的距离为2a;
过点A作BC的垂线交BC的延长线于点Q,连接PQ
在直角三角形PAQ中,AQ=$\frac{\sqrt{3}}{2}$a,PA=a
根据勾股定理可知PQ=$\frac{\sqrt{7}}{2}$a.
∴P到BC的距离为$\frac{\sqrt{7}}{2}$a.
故答案为:2a,$\frac{\sqrt{7}}{2}$a.

点评 本题主要考查了空间点到直线的距离,以及线面垂直的判定和性质,同时考查了空间想象能力、计算能力,转化与划归的思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网