题目内容

【题目】为了监控某种零件的一条生产线的生产过程检验员每天从该生产线上随机抽取16个零件并测量其尺寸(单位:cm).根据长期生产经验可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μσ2).

(1)假设生产状态正常X表示一天内抽取的16个零件中其尺寸在(μ-3σμ+3σ)之外的零件数P(X1)X的数学期望;

(2)一天内抽检零件中如果出现了尺寸在(μ-3σμ+3σ)之外的零件就认为这条生产线在这一天的生产过程可能出现了异常情况需对当天的生产过程进行检查.

①试说明上述监控生产过程方法的合理性;

②下面是检验员在一天内抽取的16个零件的尺寸:

经计算得==9.97s==≈0.212其中xi为抽取的第i个零件的尺寸i=1,2,,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值利用估计值判断是否需对当天的生产过程进行检查?剔除﹣3+3之外的数据用剩下的数据估计μσ(精确到0.01).

附:若随机变量Z服从正态分布N(μσ2),P(μ-3σ<Z<μ+3σ)=0.997 4.0.997 4160.959 2,0.09.

【答案】(1) P(X≥1)=0.0408, E(X)=0.0416 (2) (ⅰ)监控生产过程的方法是合理的,(ⅱ)μ的估计值为10.02,σ的估计值为0.09

【解析】试题分析:(1)通过P(X=0)可求出P(X1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;

(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+)之外为小概率事件可知该监控生产过程方法合理;

ⅱ)通过样本平均数、样本标准差s估计可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.

试题解析:

(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,

则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,

因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,

所以P(X≥1)=1﹣P(X=0)=0.0408,

又因为X~B(16,0.0026),

所以E(X)=16×0.0026=0.0416;

(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.

(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个

零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.

剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为

(16×9.97﹣9.22)=10.02,

因此μ的估计值为10.02.

2=16×0.2122+16×9.972≈1591.134,

剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为

(1591.134﹣9.222﹣15×10.022)≈0.008,

因此σ的估计值为≈0.09.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网