题目内容
【题目】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
①试说明上述监控生产过程方法的合理性;
②下面是检验员在一天内抽取的16个零件的尺寸:
经计算得==9.97,s==≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.997 4.0.997 416≈0.959 2,≈0.09.
【答案】(1) P(X≥1)=0.0408, E(X)=0.0416 (2) (ⅰ)监控生产过程的方法是合理的,(ⅱ)μ的估计值为10.02,σ的估计值为0.09
【解析】试题分析:(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;
(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;
(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.
试题解析:
(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,
则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,
因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,
所以P(X≥1)=1﹣P(X=0)=0.0408,
又因为X~B(16,0.0026),
所以E(X)=16×0.0026=0.0416;
(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.
(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个
零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.
剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为
(16×9.97﹣9.22)=10.02,
因此μ的估计值为10.02.
2=16×0.2122+16×9.972≈1591.134,
剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为
(1591.134﹣9.222﹣15×10.022)≈0.008,
因此σ的估计值为≈0.09.