题目内容
【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,过左焦点F且垂直于x轴的弦长为1.
(I)求椭圆C的标准方程;
(Ⅱ)点P(m,0)为椭圆C的长轴上的一个动点,过点P且斜率为 的直线l交椭圆C于A,B两点,问:|PA|2+|PB|2是否为定值?若是,求出这个定值并证明,否则,请说明理由.
【答案】解:( I)由过左焦点F且垂直于x轴的弦长为1,
可知椭圆C过点 ,∴ ,
又∵e= = ,a2=b2+c2;
三式联立解得 ,
∴椭圆的方程为 +y2=1;
( II)设P(m,0)(且﹣2≤m≤2),由已知,直线l的方程是y= (x﹣m),
由 ,消去y得,2x2﹣2mx+m2﹣4=0,(*)
设A(x1,y1),B(x2,y2),则x1、x2是方程(*)的两个根,
所以有,x1+x2=m,x1x2= ,
所以,|PA|2+|PB|2=(x1﹣m)2+y12+(x2﹣m)2+y22
=(x1﹣m)2+ (x1﹣m)2+(x2﹣m)2+ (x2﹣m)2
= [(x1﹣m)2+(x2﹣m)2]
= [x12+x22﹣2m(x1+x2)+2m2]
= [(x1+x2)2﹣2m(x1+x2)﹣2x1x2+2m2]
= [m2﹣2m2﹣(m2﹣4)+2m2]=5(为定值);
所以,|PA|2+|PB|2为定值
【解析】(Ⅰ)利用椭圆长轴长设出椭圆方程,利用点在椭圆上,求出b,即可得到椭圆方程.(Ⅱ)设出P,直线l的方程,联立直线与椭圆方程,设出A、B坐标,通过根与系数的关系,计算|PA|2+|PB|2,化简求解即可.
【题目】下面是60名男生每分钟脉搏跳动次数的频率分布表.
分组 | 频数 | 频率 | |
[51.5,57.5) | 4 | 0.067 | 0.011 |
[57.5,63.5) | 6 | 0.1 | 0.017 |
[63.5,69.5) | 11 | 0.183 | 0.031 |
[69.5,75.5) | 20 | 0.333 | 0.056 |
[75.5,81.5) | 11 | 0.183 | 0.031 |
[81.5,87.5) | 5 | 0.083 | 0.014 |
[87.5,93.5] | 3 | 0.05 | 0.008 |
(1)作出其频率分布直方图;
(2)根据直方图的各组中值估计总体平均数;
(3)估计每分钟脉搏跳动次数的范围.