题目内容
12.(1)证明:①C${\;}_{n}^{r}$+C${\;}_{n}^{r+1}$=C${\;}_{n+1}^{r+1}$;②C${\;}_{2n+2}^{n+1}$=2C${\;}_{2n+1}^{n}$(其中n,r∈N*,0≤r≤n-1);(2)某个比赛的决赛在甲、乙两名运动员之间进行,比赛共设2n+1局,每局比赛甲获胜的概率均为p(p>$\frac{1}{2}$),首先赢满n+1局者获胜(n∈N*).
①若n=2,求甲获胜的概率;
②证明:总局数越多,甲获胜的可能性越大(即甲获胜的概率越大).
分析 (1)①根据排列数公式证明即可,②由①得C2n+2n+1=C2n+1n+C2n+1n+1=2C${\;}_{2n+1}^{n}$;
(2)①甲获胜的概率P=p3(6p2-15p+10),
②设乙每一局获胜的概率为q,则p+q=1,0<q<$\frac{1}{2}$.记在甲最终获胜的概率为Pn,根据超几何分布得到Pn,利用(1)的结论计算Pn-Pn+1<0,问题得以证明.
解答 解:(1)①Cnr+Cnr+1=$\frac{n!}{r!(n-r)!}$+$\frac{n!}{(r+1)!(n-r-1)!}$=$\frac{n![(r+1)+(n-r)]}{(r+1)!(n-r)!}$=$\frac{(n+1)!}{(r+1)![(n+1)-(r+1)]!}$=Cn+1r+1;
②由①得C2n+2n+1=C2n+1n+C2n+1n+1=2C${\;}_{2n+1}^{n}$;
(2)①若n=2,甲获胜的概率P=p3+pC32p2(1-p)+pC42p2(1-p)2=p3(6p2-15p+10),
②证明:设乙每一局获胜的概率为q,则p+q=1,0<q<$\frac{1}{2}$.
记在甲最终获胜的概率为Pn,则Pn=pn+1+pCn+1npnq+pCn+2npnp2+…+pC2nnpnqn=pn+1(1+Cn+1nq+Cn+2nq2+…+C2nnqn),
∴Pn-Pn+1=pn+1(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-pn+2(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1),
=pn+1[(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-(1-q)(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)],
=pn+1[(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)+q(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)],
=pn+1[(1-1)+q(Cn+1n-Cn+2n+1+1)+q2(Cn+2n-Cn+3n+1+1)+…+qn(C2nn-C2n+1n+1+C2nn+1)-qn+1)(C2n+2n+1-C2n+1n+1+qn+2C2n+2n+1],
=pn+1[-qn+1)(C2n+2n+1-C2n+1n+1+qn+2C2n+2n+1],
=pn+1qn+1(qC2n+2n+1-C2n+1n+1)],
=pn+1qn+1(2qC2n+1n-C2n+1n)],
=pn+1qn+1C2n+1n(2q-1)<0,
所以Pn<Pn+1,
即总局数越多,甲获胜的可能性越大(即甲获胜的概率越大).
点评 本题考查了排列数公式的应用,本题的运算量很大,需要耐心和认真,属于难题.
乙队胜的概率 | 乙队平的概率 | 乙队负的概率 | |
与丙 队比赛 | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{2}$ |
与丁队比赛 | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ |
(Ⅰ)选拔赛结束,求乙队积4分的概率;
(Ⅱ)设随机变量X为选拔赛结束后乙队的积分,求随机变量X的分布列与数学期望;
(Ⅲ)在目前的积分情况下,M同学认为:乙队至少积4分才能确保出线,N同学认为:乙队至少积5分才能确保出线.你认为谁的观点对?或是两者都不对?(直接写结果,不需证明)
A. | ?x≤0,lnx≥x | B. | ?x>0,lnx≥x | C. | ?x≤0,lnx<x | D. | ?x>0,lnx<x |
A. | (11+$4\sqrt{2}$)π | B. | (12+4$\sqrt{2}$)π | C. | (13+4$\sqrt{2}$)π | D. | (14+4$\sqrt{2}$)π |