题目内容

20.某种产品的广告费用支出x万元与销售额y万元之间有如下的对应数据:
x24568
y3040605070
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为12万元时,销售收入y的值.
附:线性回归方程:$\stackrel{∧}{y}$=bx+a,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\overline{xy}-\overline{x}\overline{y}}{\overline{{x}^{2}}-{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

分析 (1)根据所给的数据,写出5组坐标,作出散点图如图所示.
(2)根据所给的数据先做出横标和纵标的平均数,利用最小二乘法写出线性回归方程系数的表达式,把样本中心点代入求出a的值,得到线性回归方程.
(3)根据所给的变量x的值,把值代入线性回归方程,得到对应的y的值,这里的y的值是一个预报值.

解答 解:(1)根据所给的数据,写出5组坐标,作出散点图如图所示:
…(2分)
(2)求回归直线方程.
$\overline{x}$=$\frac{1}{5}$(2+4+5+6+8)=5,$\overline{y}$=$\frac{1}{5}$(30+40+60+50+70)=50…4
$\sum _{i=1}^{5}$${x}_{i}^{2}$=145,
$\sum _{i=1}^{5}$xiyi=1380,…6 分
b=$\frac{\sum _{i=1}^{5}{x}_{i}{y}_{i}-5\overline{x}\overline{y}}{\sum _{i=1}^{5}{{x}_{i}}^{2}-5{\overline{x}}^{2}}$=$\frac{1380-5×5×50}{145-5×{5}^{2}}$=6.5,
a=50-6.5×5=17.5
∴因此回归直线方程为y=6.5x+17.5;…10
(3)当x=12时,预报y的值为y=12×6.5+17.5=95.5万元. 
即广告费用为12万元时,销售收入y的值大约是95.5万元.…(12分)

点评 本题考查线性回归方程的求法和应用,本题解题的关键是求出线性回归方程的系数,这是后面解题的先决条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网