题目内容
【题目】已知函数满足,且在上为增函数,,则不等式的解集为__________.
【答案】
【解析】
由f(﹣x)=﹣f(x),化简不等式得.再分x>0和x<0时两种情况加以讨论,利用函数的单调性和f(1)=0,分别解关于x的不等式得到x的取值范围,最后综合可得原不等式的解集.
∵函数f(x)满足f(﹣x)=﹣f(x)(x∈R),
∴f(x)﹣f(﹣x)=f(x)+f(x)=2f(x),
因此,不等式等价于,
化简得或,
①当x>0时,由于在(0,+∞)上f(x)为增函数且f(1)=0,
∴由不等式f(x)≤0=f(1),得0<x≤1;
②当x<0时,﹣x>0,
不等式f(x)≥0化成﹣f(x)≤0,即f(﹣x)≤0=f(1),
解之得﹣x≤1,即﹣1≤x<0.
综上所述,原不等式的解集为[﹣1,0)∪(0,1].
故答案为:[﹣1,0)∪(0,1]
【题目】某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表
年产量/亩 | 年种植成本/亩 | 每吨售价 | |
黄瓜 | 4吨 | 1.2万元 | 0.55万元 |
韭菜 | 6吨 | 0.9万元 | 0.3万元 |
为使一年的种植总利润(总利润=总销售收入﹣总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )
A.50,0
B.30,20
C.20,30
D.0,50
【题目】为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:
作文成绩优秀 | 作文成绩一般 | 总计 | |
课外阅读量较大 | 22 | 10 | 32 |
课外阅读量一般 | 8 | 20 | 28 |
总计 | 30 | 30 | 60 |
由以上数据,计算得到的观测值,根据临界值表,以下说法正确的是( )
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.05 | 0.010 | 0.005 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A. 在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”
B. 在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关
C. 在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关
D. 在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关