题目内容
【题目】已知曲线C1的极坐标方程为ρ2cos2θ=8,曲线C2的极坐标方程为,曲线C1、C2相交于A、B两点.(p∈R)
(Ⅰ)求A、B两点的极坐标;
(Ⅱ)曲线C1与直线(t为参数)分别相交于M,N两点,求线段MN的长度.
【答案】(Ⅰ)或(Ⅱ)
【解析】
试题分析:(I)由得,即可得到ρ.进而得到点A,B的极坐标.(II)由曲线的极坐标方程化为,即可得到普通方程为.将直线代入,整理得.进而得到|MN|.
试题解析:(Ⅰ)由得:,
∴ρ2=16,
即ρ=±4.
∴A、B两点的极坐标为:或.
(Ⅱ)由曲线C1的极坐标方程ρ2cos2θ=8化为ρ2(cos2θ﹣sin2θ)=8,
得到普通方程为x2﹣y2=8.
将直线代入x2﹣y2=8,
整理得.
∴|MN|==.
【题目】已知函数的图像两相邻对称轴之间的距离是,若将的图像先向右平移个单位,再向上平移个单位,所得函数为奇函数.
(1)求的解析式;
(2)求的对称轴及单调区间;
(3)若对任意,恒成立,求实数的取值范围.
【题目】现有甲、乙两个投资项目,对甲项目投资十万元,据对市场份样本数据统计,年利润分布如下表:
年利润 | 万元 | 万元 | 万元 |
频数 |
对乙项目投资十万元,年利润与产品质量抽查的合格次数有关,在每次抽查中,产品合格的概率均为,在一年之内要进行次独立的抽查,在这次抽查中产品合格的次数与对应的利润如下表:
合格次数 | 次 | 次 | 次 |
年利润 | 万元 | 万元 | 万元 |
记随机变量分别表示对甲、乙两个项目各投资十万元的年利润.
(1)求的概率;
(2)某商人打算对甲或乙项目投资十万元,判断哪个项目更具有投资价值,并说明理由.
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 2 | 3 | 2 | 7 |
表中的数据显示,与之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算关于的回归方程.
回归直线的斜率和截距的最小二乘估计公式分别为.