题目内容
【题目】2016年1月1日,我国实行全面二孩政策,同时也对妇幼保健工作提出了更高的要求.某城市实行网格化管理,该市妇联在网格1与网格2两个区域内随机抽取12个刚满8个月的婴儿的体重信息,体重分布数据的茎叶图如图所示(单位:斤,2斤1千克),体重不超过千克的为合格.
(1)从网格1与网格2分别随机抽取2个婴儿,求网格1至少有一个婴儿体重合格且网格2至少有一个婴儿体重合格的概率;
(2)妇联从网格1内8个婴儿中随机抽取4个进行抽检,若至少2个婴儿合格,则抽检通过,若至少3个合格,则抽检为良好,求网格1在抽检通过的条件下,获得抽检为良好的概率;
(3)若从网格1与网格2内12个婴儿中随机抽取2个,用表示网格2内婴儿的个数,求的分布列与数学期望.
【答案】(1) ;(2) ;(3)答案见解析.
【解析】试题分析: (1)根据茎叶图得出网格1内体重合格的婴儿数和网格2内体重合格的婴儿数,运用对立事件的概率求解即可;(2)分别求出网格1在抽检通过的概率和获得抽检为良好的概率,运用条件概率求解即可;(3) 由题意得出所有x的可能取值,分别求出概率列成表格形式得出分布列,根据定义求得期望值.
试题解析:
(1)由茎叶图知,网格1内体重合格的婴儿数为4,网格2内体重合格的婴儿数为2,则所求概率.
(2)设事件表示“2个合格,2个不合格”;事件表示“3个合格,1个不合格”; 事件表示“4个全合格”;事件表示“抽检通过”;事件表示“抽检良好”.
∴,
,则所求概率.
(3)由题意知, 的所有可能取值为0,1,2.
∴, , ,
∴的分布列为
∴.
点睛:在求某事件的概率时,若事件较为复杂,可通过求它的对立事件的概率来求解,对于含有”至多”,”至少”等词语的概率问题时,一般用对立事件的概率来解较为简单;求概率时,当题目中含有”在…发生的条件下,求…发生的概率”时,一般用条件概率求解,解题时分清楚谁是条件,然后利用公式求解.