题目内容
如图所示,F1和F2分别是双曲线
的两个焦点,A和B是以O为圆心,|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则离心率为( )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240007266863314.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240007265611120.png)
A.![]() | B.![]() | C.![]() | D.![]() |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240007266863314.jpg)
C
试题分析:连接AF1,根据△F2AB是等边三角形可知∠AF2B=60°,F1F2是圆的直径可表示出|AF1|、|AF2|,再由双曲线的定义可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000726717344.png)
连接AF1,则∠F1AF2=90°,∠AF2B=60°
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/2014082400072674815516.png)
∴|AF1|=c,|AF2|=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000726717344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000726717344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000726779352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000726795505.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000726811420.png)
点评:解决该试题的关键是根据双曲线的定义以及等边三角形的性质得到关于a,b,c的关系式,进而得到其离心率的求解。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目