题目内容

【题目】函数f(x)=mx2﹣2x+1有且仅有一个为正实数的零点,则实数m的取值范围是(
A.(﹣∞,1]
B.(﹣∞,0]∪{1}
C.(﹣∞,0)∪(0,1]
D.(﹣∞,1)

【答案】C
【解析】解:当m=0时,令f(x)=﹣2x+1=0,求得x= ,满足条件. 当m≠0时,函数f(x)=mx2﹣2x+1图象是抛物线,且与y轴的交点为(0,1),由f(x)有且仅有一个正实数的零点,
则得 ①对称轴x= >0,且判别式△=4﹣4m=0,求得m=1.
或者②对称轴x= <0,解得 m<0.
综上可得,实数m的取值范围{m|m=1,或m≤0}.
【考点精析】本题主要考查了函数的零点的相关知识点,需要掌握函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网