题目内容

【题目】已知函数f(x)=x2﹣2x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.
(1)求a,k的值;
(2)当x为何值时,f(logax)有最小值?求出该最小值.

【答案】
(1)解:因为log2f(a)=2,f(log2a)=k所以log2(a2﹣2a+k)=2,log2a=0,或log2a=2

a2﹣2a+k=4,a=1,或a=4,

又a>0,且a≠1,

所以a=4,k=﹣4


(2)解:f(logax)=f(log4x)=(log4x)2﹣2log4x﹣4=(log2x﹣1)2﹣5.

所以当log4x=1,即x=4时,f(logax)有最小值﹣5


【解析】(1)因为log2f(a)=2,f(log2a)=k,所以log2(a2﹣2a+k)=2,log2a=0,或log2a=2,解得a,k的值;(2)f(logax)=f(log4x)=(log4x)2﹣2log4x﹣4=(log2x﹣1)2﹣5,结合二次函数的图像和性质,可得函数的最小值.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网