题目内容
【题目】若α∈[0,π],β∈[﹣ , ],λ∈R,且(α﹣ )3﹣cosα﹣2λ=0,4β3+sinβcosβ+λ=0,则cos( +β)的值为( )
A.0
B.
C.
D.
【答案】D
【解析】解:∵4β3+sinβcosβ+λ=0,∴(﹣2β)3﹣2sinβcosβ﹣2λ=0,即 (﹣2β)3+sin(﹣2β )﹣2λ=0.
再由(α﹣ )3﹣cosα﹣2λ=0,可得(α﹣ )3 +sin(α﹣ )﹣2λ=0.
故﹣2β和α﹣ 是方程 x3+sinx﹣2λ=0 的两个实数解.
再由α∈[0,π],β∈[﹣ , ],所以 ﹣α 和2β的范围都是[﹣ , ],
由于函数 x3+sinx 在[﹣ , ]上单调递增,故方程 x3+sinx﹣2λ=0在[﹣ , ]上只有一个解,
所以, ﹣α=2β,所以 +β= ,所以cos( +β)= .
故选:D.
【考点精析】解答此题的关键在于理解两角和与差的余弦公式的相关知识,掌握两角和与差的余弦公式:.
练习册系列答案
相关题目
【题目】高考复习经过二轮“见多识广”之后,为了研究考前“限时抢分”强化训练次数与答题正确率﹪的关系,对某校高三某班学生进行了关注统计,得到如下数据:
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求关于的线性回归方程,并预测答题正确率是100﹪的强化训练次数;
(2)若用表示统计数据的“强化均值”(精确到整数),若“强化均值”的标准差在区间内,则强化训练有效,请问这个班的强化训练是否有效?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
=, =- ,
样本数据的标准差为: