题目内容
【题目】在棱长为1的正方体中,点是对角线上的动点(点与不重合),则下列结论正确的是__________
①存在点,使得平面平面;
②存在点,使得平面平面;
③的面积可能等于;
④若分别是在平面与平面的正投影的面积,则存在点,使得
【答案】①②③④
【解析】
根据正方体的结构特征,利用线面位置关系的判定定理和性质定理,以及三角形的面积公式和投影的定义,即可求解,得到答案.
①如图所示,当是中点时,可知也是中点且,,,所以平面,所以,同理可知,
且,所以平面,
又平面,所以平面平面,故正确;
②如图所示,取靠近的一个三等分点记为,记,,因为,所以,所以为靠近的一个三等分点,
则为中点,又为中点,所以,且,,,所以平面平面,且平面,
所以平面,故正确;
③如图所示,作,在中根据等面积得:,
根据对称性可知:,又,所以是等腰三角形,
则,故正确;
④如图所示,设,在平面内的正投影为,在平面内的正投影为,所以,,当时,解得:,故正确.
故答案为 ①②③④
练习册系列答案
相关题目
【题目】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
根据表中数据,问是否有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附: