题目内容

14.已知f(x)定义在R上的函数,f′(x)是f(x)的导函数,若f(x)>1-f′(x),且f(0)=2,则不等式exf(x)>ex+1(其中e为自然对数的底数)的解集为(  )
A.(0,+∞)B.(-∞,0)∪(1,+∞)C.(-1,+∞)D.(-∞,-1)∪(0,+∞)

分析 构造函数g(x)=exf(x)-ex,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解

解答 解:设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f(x)>1-f′(x),
∴f(x)+f′(x)-1>0,
∴g′(x)>0,
∴y=g(x)在定义域上单调递增,
∵exf(x)>ex+1,
∴g(x)>1,
又∵g(0)=e0f(0)-e0=1,
∴g(x)>g(0),
∴x>0,
∴不等式的解集为(0,+∞)
故选:A

点评 本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网