题目内容
【题目】设f(x)= (x>0),计算观察以下格式: f1(x)=f(x),f2(x)=f(f1(x)),f3(x)=f(f2(x)),f4(x)=f(f3(x)),…
根据以上事实得到当n∈N*时,fn(1)= .
【答案】 (n∈N*)
【解析】解:由已知中设函数f(x)= (x>0),观察: f1(x)=f(x)= ,
f2(x)=f(f1(x))= ;
f3(x)=f(f2(x))= .
f4(x)=f(f3(x))=
…
归纳可得:fn(x)= ,(n∈N*)
∴fn(1)= (n∈N*),
所以答案是 (n∈N*).
【考点精析】关于本题考查的归纳推理,需要了解根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理才能得出正确答案.
练习册系列答案
相关题目