题目内容
【题目】已知函数.
(Ⅰ)求的单调区间;
(Ⅱ)求在区间上的最小值.
【答案】(Ⅰ);(Ⅱ).
【解析】(Ⅰ).
令,得.
与的情况如上:
所以,的单调递减区间是,单调递增区间是.
(Ⅱ)当,即时,函数在上单调递增,
所以在区间上的最小值为.
当,即时,
由(Ⅰ)知在上单调递减,在上单调递增,
所以在区间上的最小值为.
当,即时,函数在上单调递减,
所以在区间上的最小值为.
综上,当时,的最小值为;
当时,的最小值为;
当时,的最小值为.
【题型】解答题
【结束】
19
【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.
(1)求的方程;
(2)若点在上,过作的两弦与,若,求证: 直线过定点.
【答案】(1)或;(2)证明见解析.
【解析】试题分析:(1)当焦点在轴时,设的方程为,当焦点在轴时,设的方程为,分别代入点,求得的值,即可得到抛物线的方程;(2)因为点在上,所以曲线
的方程为,设点,用直线与曲线方程联立,利用韦达定理整理得到,即可得到,判定直线过定点.
试题解析:(1)当焦点在轴时,设的方程为,代人点得,即.当焦点在轴时,设的方程为,代人点得,即,
综上可知: 的方程为或.
(2)因为点在上,所以曲线的方程为.
设点,
直线,显然存在,联立方程有: .,
即即.
直线即直线过定点.
练习册系列答案
相关题目