题目内容
【题目】已知,函数.
(1)当时,解不等式;
(2)若关于的方程的解集中恰有两个元素,求的取值范围;
(3)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.
【答案】(1);(2);(3).
【解析】
(1)当a=1时,利用对数函数的单调性,直接解不等式f(x)1即可;
(2)化简关于x的方程f(x)+2x=0,通过分离变量推出a的表达式,通过解集中恰有两个元素,利用二次函数的性质,即可求a的取值范围;
(3)在R上单调递减利用复合函数的单调性,求解函数的最值,∴令,化简不等式,转化为求解不等式的最大值,然后求得a的范围.
(1)当时,,
∴,解得,
∴原不等式的解集为.
(2)方程,
即为,
∴,
∴,
令,则,
由题意得方程在上只有两解,
令, ,
结合图象可得,当时,直线和函数的图象只有两个公共点,
即方程只有两个解.
∴实数的范围.
(3)∵函数在上单调递减,
∴函数在定义域内单调递减,
∴函数在区间上的最大值为,
最小值为,
∴,
由题意得,
∴恒成立,
令,
∴对,恒成立,
∵在上单调递增,
∴
∴,
解得,
又,
∴.
∴实数的取值范围是.
练习册系列答案
相关题目