题目内容
【题目】若任意两圆交于不同两点、,且满足,则称两圆为“心圆”,已知圆:与圆:为“心圆”,则实数的值为( )
A. B. C. 2 D.
【答案】B
【解析】
由,可得(x12﹣x22)+(y12﹣y22)=0,将A(x1,y1)、B(x2,y2),代入x2+y2﹣4x+2y﹣a2+5=0,两方程相减,可得 (*),将A(x1,y1)、B(x2,y2),代入x2+y2﹣(2b﹣10)x﹣2by+2b2﹣10b+16=0,两方程相减,可得+2b=0,将(*)代入得:+2b=0,即可求出实数b的值.
∵,
∴(x12﹣x22)+(y12﹣y22)=0
将A(x1,y1)、B(x2,y2),代入x2+y2﹣4x+2y﹣a2+5=0得:
x12+y12﹣4x1+2y1﹣a2+5=0…①
x22+y22﹣4x2+2y2﹣a2+5=0…②
①﹣②得:(x12﹣x22)+(y12﹣y22)﹣4(x1﹣x2)+2(y1﹣y2)=0
∴4(x1﹣x2)﹣2(y1﹣y2)=0
∴ …(*)
将A(x1,y1)、B(x2,y2),代入x2+y2﹣(2b﹣10)x﹣2by+2b2﹣10b+16=0得:
x12+y12﹣(2b﹣10)x1﹣2by1+2b2﹣10b+16…③
x22+y22﹣(2b﹣10)x2﹣2by2+2b2﹣10b+16…④
③﹣④得:(x12﹣x22)+(y12﹣y22)﹣(2b﹣10)(x1﹣x2)﹣2b(y1﹣y2)=0
∴(2b﹣10)(x1﹣x2)+2b(y1﹣y2)=0
即:+2b=0,将(*)代入得:+2b=0
解得:b=.
故答案为:B.
练习册系列答案
相关题目