题目内容
【题目】一次循环赛中有2n+1支参赛队,其中每队与其他队均只进行一场比赛,且比赛结果中没有平局。若三支参赛队A、B、C满足:A击败B,B击败C,C击败A,则称它们形成一个“环形三元组”。求:
(1)环形三元组的最小可能数目;
(2)环形三元组的最大可能数目。
【答案】(1)0;(2)
【解析】
(1)最小值为0.
对于比赛中的两支参赛队,当且仅当i>j时,有击败,此时环形三元组数最小.
(2)任何三支参赛队要么组成一个环形三元组,要么组成一个“支配型”三元组(即某队击败了其余两队).设前者有c组,后者有d组.则
.
假设某队击败支其他队.则获胜组必在个支配型三元组中.
注意到,所有的比赛场次为
.
因此,.
由柯西不等式得
.
故
.
将所有参赛队排列在一个圆周上,对每支参赛队而言,在其顺时针方向的n支队被它击败,在其逆时方向的n支队均击败它时取到最大值.
【题目】某校有教师400人,对他们进行年龄状况和学历的调查,其结果如下:
学历 | 35岁以下 | 35-55岁 | 55岁及以上 |
本科 | 60 | 40 | |
硕士 | 80 | 40 |
(1)若随机抽取一人,年龄是35岁以下的概率为,求;
(2)在35-55岁年龄段的教师中,按学历状况用分层抽样的方法,抽取一个样本容量为5的样本,然后在这5名教师中任选2人,求两人中至多有1人的学历为本科的概率.
【题目】现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元) | ||||||
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“月收入以5500元为分界点对“楼市限购令”的态度有差异;
月收入不低于55百元的人数 | 月收入低于55百元的人数 | 合计 | |
赞成 | a=______________ | c=______________ | ______________ |
不赞成 | b=______________ | d=______________ | ______________ |
合计 | ______________ | ______________ | ______________ |
(2)试求从年收入位于(单位:百元)的区间段的被调查者中随机抽取2人,恰有1位是赞成者的概率。
参考公式:,其中.
参考值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |