题目内容
【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命.为了研究司机开车时使用手机的情况,交警部门调查了100名机动车司机,得到以下统计:在55名男性司机中,开车时使用手机的有40人,开车时不使用手机的有15人;在45名女性司机中,开车时使用手机的有20人,开车时不使用手机的有25人.
(Ⅰ)完成下面的2×2列联表,并判断是否有99.5%的把握认为开车时使用手机与司机的性别有关;
开车时使用手机 | 开车时不使用手机 | 合计 | |
男性司机人数 | |||
女性司机人数 | |||
合计 |
(Ⅱ)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为X,若每次抽检的结果都相互独立,求X的分布列和数学期望E(X).
参考公式与数据: ,其中n=a+b+c+d.
P(Χ2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】解:(Ⅰ)填写2×2列联表,如下;
开车时使用手机 | 开车时不使用手机 | 合计 | |
男性司机人数 | 40 | 15 | 55 |
女性司机人数 | 20 | 25 | 45 |
合计 | 60 | 40 | 100 |
根据数表,计算 = ≈8.25>7.879,
所以有99.5%的把握认为开车时使用手机与司机的性别有关;
(Ⅱ)由题意,任意抽取1辆车中司机为男性且开车时使用手机的概率是 = ,
则X的可能取值为:0,1,2,3,且X~B(3, ),
可得P(X=k)= ,
所以P(X=0)= = ,
P(X=1)= = ,
P(X=2)= = ,
P(X=3)= = ;
所以X的分布列为:
X | 0 | 1 | 2 | 3 |
P |
|
|
|
|
数学期望为EX=3× =
【解析】(Ⅰ)根据题意填写2×2列联表,计算观测值,对照临界值得出结论;(Ⅱ)求出任意抽取1辆车中司机为男性且开车时使用手机的概率, 知X的可能取值,且X服从二项分布,计算对应的概率,
写出X的分布列,计算数学期望值.