题目内容
【题目】如图,已知三棱柱ABC﹣A1B1C1的底面ABC是等边三角形,且AA1⊥底面ABC,M为AA1的中点,N在线段AB上,且AN=2NB,点P在CC1上.
(1)证明:平面BMC1⊥平面BCC1B1;
(2)当 为何值时,有PN∥平面BMC1?
【答案】
(1)解:连接B1C,与BC1交于O,连接MO,则MO⊥BC1,
取BC中点Q,连接AQ,OQ,则AQ∥MO,
∵CC1⊥AQ,∴CC1⊥MO,
∵BC1∩CC1=C1,∴MO⊥平面BCC1B1,
∵MO平面BMC1,
∴平面BMC1⊥平面BCC1B1;
(2)解:取AE=2EM,则NE∥BM,
∵NE平面BMC1,BM平面BMC1,
∴NE∥平面BMC1,
= 时,EM∥PC1,四边形EMPC1是平行四边形,∴MC1∥EP,∴EP∥平面BMC1,
∵NE∩EP=E,∴平面NEP∥∥平面BMC1,
∴PN∥平面BMC1.
【解析】(1)连接B1C,与BC1交于O,连接MO,则MO⊥BC1 , 取BC中点Q,连接AQ,OQ,则AQ∥MO,证明:MO⊥平面BCC1B1 , 即可证明平面BMC1⊥平面BCC1B1;(2)取AE=2EM,则NE∥BM, = 时,EM∥PC1 , 四边形EMPC1是平行四边形,即可得出结论.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行,以及对平面与平面垂直的判定的理解,了解一个平面过另一个平面的垂线,则这两个平面垂直.
【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命.为了研究司机开车时使用手机的情况,交警部门调查了100名机动车司机,得到以下统计:在55名男性司机中,开车时使用手机的有40人,开车时不使用手机的有15人;在45名女性司机中,开车时使用手机的有20人,开车时不使用手机的有25人.
(Ⅰ)完成下面的2×2列联表,并判断是否有99.5%的把握认为开车时使用手机与司机的性别有关;
开车时使用手机 | 开车时不使用手机 | 合计 | |
男性司机人数 | |||
女性司机人数 | |||
合计 |
(Ⅱ)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为X,若每次抽检的结果都相互独立,求X的分布列和数学期望E(X).
参考公式与数据: ,其中n=a+b+c+d.
P(Χ2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |