题目内容
【题目】在三棱锥中,BO、AO、CO所在直线两两垂直,且AO=CO,∠BAO=60°,E是AC的中点,三棱锥的体积为
(1)求三棱锥的高;
(2)在线段AB上取一点D,当D在什么位置时,和的夹角大小为
【答案】(1).(2)D在AB的中点时.
【解析】
(1)由题意的BO⊥平面ACO,即BO就是三棱锥B﹣ACO的高,然后根据体积建立等式关系,解之即可求出所求;
(2)以O为原点,OA为x轴,OC为y轴,OB为z轴,建立空间直角坐标系,设D(x,0,(1﹣x)),设和的夹角为θ,则coaθ建立等式关系,解之即可求出x的值,从而可判定点D的位置.
(1)由题意的BO⊥平面ACO,即BO就是三棱锥B﹣ACO的高,
在Rt△ABO中,设AO=a,∠BAO=60°,所以BOa,
CO=a,所以VB﹣ACOAO×BO×COa3.
所以a=1,所以三棱锥的高BO为.
(2)以O为原点,如图建立空间直角坐标系,
设D(x,0,(1﹣x)),则C(0,1,0),E(,,0 )
(﹣x,1,( x﹣1)),(,,0),
设和的夹角为θ
则coaθ
,
解之得,x=2(舍去)或x,
所以当D在AB的中点时,和的夹角大小为arccos.
【题目】一次考试中,5名同学的数学、物理成绩如表所示:
学生 | |||||
数学分 | 89 | 91 | 93 | 95 | 97 |
物理分 | 87 | 89 | 89 | 92 | 93 |
请在图中的直角坐标系中作出这些数据的散点图,并求出这些数据的回归方程;
要从4名数学成绩在90分以上的同学中选2名参加一项活动,以X表示选中的同学的物理成绩高于90分的人数,求随机变量X的分布列及数学期望.
参考公式:线性回归方程;,其中,.
【题目】在中国北京世界园艺博览会期间,某工厂生产、、三种纪念品,每一种纪念品均有精品型和普通型两种,某一天产量如下表:(单位:个)
纪念品 | 纪念品 | 纪念品 | |
精品型 | |||
普通型 |
现采用分层抽样的方法在这一天生产的纪念品中抽取个,其中种纪念品有个.
(1)求的值;
()从种精品型纪念品中抽取个,其某种指标的数据分别如下:、、、、,把这个数据看作一个总体,其均值为,方差为,求的值;
(3)用分层抽样的方法在种纪念品中抽取一个容量为的样木,从样本中任取个纪念品,求至少有个精品型纪念品的概率.
【题目】某企业生产甲、乙两种产品均需要,两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )
甲 | 乙 | 原料限额 | |
(吨) | 3 | 2 | 10 |
(吨) | 1 | 2 | 6 |
A. 10万元B. 12万元C. 13万元D. 14万元