题目内容

10.已知x,y满足约束条件$\left\{\begin{array}{l}{x^2}+{y^2}≤4\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,则z=2x+y的最大值为(  )
A.2B.$\sqrt{5}$C.4D.$2\sqrt{5}$

分析 根据约束条件画图,判断当直线与圆相切时,取最大值,运用直线与圆的位置关系,注意圆心,半径的运用得出$\frac{|k|}{\sqrt{{2}^{2}+1}}$≤2.

解答 解:∵x,y满足约束条件$\left\{\begin{array}{l}{x^2}+{y^2}≤4\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,
∴根据阴影部分可得出当直线与圆相切时,取最大值,
y=-2x+k,
$\frac{|k|}{\sqrt{{2}^{2}+1}}$≤2,
即k$≤2\sqrt{5}$
所以最大值为2$\sqrt{5}$,
故选:D

点评 本题考查了运用线性规划问题,数形结合的思想求解二元式子的最值问题,关键是确定目标函数,画图.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网