题目内容

如图,在三棱锥中,底面,且
的中点,且交于点.
(1)求证:平面
(2)当时,求三棱锥的体积.

(1)详见解析;(2).

解析试题分析:(1)由已知条件平面得到,再由已知条件得到,从而得到平面,进而得到,利用等腰三角形三线合一得到,结合直线与平面垂直的判定定理得到平面,于是得到,结合题中已知条件以及直线与平面垂直的判定定理得到平面;(2)利用(1)中的结论平面,然后以点为顶点,以为高, 结合等体积法求出三棱锥的体积.
(1)证明:底面,又易知
平面
的中点,
平面
又已知
平面
(2)平面平面


平面



.
考点:1.直线与平面垂直;2.等体积法求三棱锥的体积

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网