题目内容
在如图所示的多面体中,已知正三棱柱ABCA1B1C1的所有棱长均为2,四边形ABDC是菱形.(1)求证:平面ADC1⊥平面BCC1B1;(2)求该多面体的体积.
(1)见解析(2)
解析
如图,在三棱锥中,底面,,且,点是的中点,且交于点.(1)求证:平面;(2)当时,求三棱锥的体积.
圆锥PO如图1所示,图2是它的正(主)视图.已知圆O的直径为AB,C是圆周上异于A,B的一点,D为AC的中点. (1)求该圆锥的侧面积S;(2)求证:平面PAC平面POD;(3)若,在三棱锥A-PBC中,求点A到平面PBC的距离.
如图,三棱柱中,,,.(1)证明:;(2)若,,求三棱柱的体积.
如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2。(1)求证:CE∥平面PAB;(2)求四面体PACE的体积.
四面体的六条棱中,有五条棱长都等于a.(1)求该四面体的体积的最大值;(2)当四面体的体积最大时,求其表面积.
如图(1)所示,△ABC是等腰直角三角形,AC=BC=4,E、F分别为AC、AB的中点,将△AEF沿EF折起,使A′在平面BCEF上的射影O恰为EC的中点,得到图(2).(1)求证:EF⊥A′C;(2)求三棱锥FA′BC的体积.
如图,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=,求三棱柱ABCA1B1C1的体积.
下图是一几何体的直观图、主视图、俯视图、左视图.(1)若为的中点,求证:面;(2)证明面.(3)求该几何体的体积.