题目内容
【题目】定义:在平面内,点到曲线上的点的距离的最小值称为点到曲线的距离,在平面直角坐标系中,已知圆: 及点,动点到圆的距离与到点的距离相等,记点的轨迹为曲线.
(1)求曲线的方程;
(2)过原点的直线(不与坐标轴重合)与曲线交于不同的两点,点在曲线上,且,直线与轴交于点,设直线的斜率分别为,求.
【答案】(Ⅰ);(Ⅱ).
【解析】试题分析:(Ⅰ)由点到曲线的距离的定义可知, 到圆的距离,所以,所以有,由椭圆定义可得点的轨迹为以、为焦点的椭圆,从而可求出椭圆的方程;(Ⅱ)设,则,则直线的斜率为,由可得直线的斜率是,记,设直线的方程为,与椭圆方程联立,得到关于的一元二次方程,利用韦达定理用表示与即可得到结论.
试题解析: (Ⅰ)由分析知:点在圆内且不为圆心,故,
所以点的轨迹为以、为焦点的椭圆,
设椭圆方程为,则,
所以,故曲线的方程为
(Ⅱ)设,则,则直线的斜率为,又,所以直线的斜率是,记,设直线的方程为,由题意知,由得: .∴,
∴,由题意知, ,
所以,
所以直线的方程为,令,得,即.
可得.
所以,即
(其他方法相应给分)
【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量(千辆) | 2 | 3 | 4 | 5 | 8 |
每天一辆车平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));
租用单车数量 (千辆) | 2 | 3 | 4 | 5 | 8 | |
每天一辆车平均成本 (元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 | 2.4 | 2.1 | 1.6 | ||
残差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估计值 | 2.3 | 2 | 1.9 | ||
残差 | 0.1 | 0 | 0 |
②分别计算模型甲与模型乙的残差平方和及,并通过比较的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).