题目内容
【题目】已知如图1直角梯形,,,,,为的中点,沿将梯形折起(如图2),使平面平面.
(1)证明平面;
(2)在线段上是否存在点,使得平面与平面所成的锐二面角的余弦值为.
【答案】(1)详见解析(2)存在点,且为中点
【解析】
(1)通过证明和即可得证;
(2)以,,方向为,,轴正方向,建立空间直角坐标系,设,,通过两个面的法向量建立方程求解即可.
(1)连结,则,
由平面平面,所以平面,
所以.
又,所以平面.
(2)如图,由(1)得平面,所以.
所以,,两两垂直,分别以,,方向,,轴正方向,建立空间直角坐标系,则,,,设,,
所以,,
设平面的法向量为,
则,
,
取,得.
平面的法向量为.
所以,所以.
所以线段上存在点,且为中点时,使得平面与平面所成的锐二面角的余弦值为.
【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)①建立月总成本y与月产量x之间的回归方程;
②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?
(均精确到0.001)
附注:①参考数据:,
,
②参考公式:相关系数,
回归方程中斜率和截距的最小二乘估计公式分别为:.
【题目】019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者,为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据:
(1)请将列联表填写完整,并判断能否在犯错误的概率不超过0.01的前提下,认为有武汉旅行史与有确诊病例接触史有关系?
有接触史 | 无接触史 | 总计 | |
有武汉旅行史 | 4 | ||
无武汉旅行史 | 10 | ||
总计 | 25 | 45 |
(2)已知在无武汉旅行史的10名患者中,有2名无症状感染者.现在从无武汉旅行史的10名患者中,选出2名进行病例研究,记选出无症状感染者的人数为,求的分布列以及数学期望.
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.