题目内容
我市为积极相应《全民健身条例》大力开展学生体育活动,如图是委托调查机构在市区的两所学校A校、B校中分别随机抽取了10名高二年级的学生当月体育锻炼时间的茎叶图(单位:小时)
(Ⅰ)根据茎叶图,分别写将两所学校学生当月体育锻炼 时间的众数、中位数和平均数填入下表;
(Ⅱ)根据茎叶图,求A校学生的月体育锻炼时间的方差;
(Ⅲ)若学生月体育锻炼的时间低于10小时,就说明该生体育锻炼时间严重不足。根据茎叶图估计两所学校的学生体育锻炼严重不足的频率。
(Ⅰ)见解析;(Ⅱ)30.2;(Ⅲ)A校的频率为0.2,B校的频率,0.5.
解析试题分析:(Ⅰ)...................6分 A校 B校 众数 17 13或14 中位数 14 8 平均数 13 11
(Ⅱ)...................7分
...........................10分
(Ⅲ)A校的频率为.......................11分
B校的频率为.................................12分
考点:众数、中位数、平均数、方差的概念;茎叶图。
点评:本题直接考查众数、中位数、平均数、方差等有关概念,属于基础题型。但我们要熟记方差公式。
练习册系列答案
相关题目
(10分)某种产品的广告费支出x与消费额y(单位:百万元)之间有如下对应数据:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(2)预测当广告费支出为700万元时的销售额.
(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图;并指出x,y 是否线性相关;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考:用最小二乘法求线性回归方程系数公式 ,)
某校为了解学生的学科学习兴趣,对初高中学生做了一个喜欢数学和喜欢语文的抽样调查,随机抽取了名学生,相关的数据如下表所示:
| 数学 | 语文 | 总计 |
初中 | |||
高中 | |||
总计 |
(2) 在(1)中抽取的名学生中任取名,求恰有名初中学生的概率.
(本小题满分12分)某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程.(其中
)