题目内容
【题目】已知函数是定义在R上的奇函数,
(1)求实数的值;
(2)如果对任意,不等式恒成立,求实数的取值范围.
【答案】(1)1(2)
【解析】
(1)利用函数为奇函数的定义即可得到m值;(2)先判断出函数f(x)在R上单调递增,利用奇偶性和单调性将不等式转为恒成立,然后变量分离,转为求函数最值问题,最后解不等式即可得a的范围.
解:(1)方法1:因为是定义在R上的奇函数,
所以,即,
即,即
方法2:因为是定义在R上的奇函数,所以,即,
即,检验符合要求.
(2),
任取,则 ,
因为,所以,所以,
所以函数在R上是增函数.
注:此处交代单调性即可,可不证明
因为,且是奇函数
所以,
因为在R上单调递增,所以,
即对任意都成立,
由于=,其中,
所以,即最小值为3
所以,
即,解得,
故,即.
练习册系列答案
相关题目