题目内容
【题目】设函数,则下列命题中正确的个数是( )
①当时,函数在上是单调增函数;
②当时,函数在上有最小值;
③函数的图象关于点对称;
④方程可能有三个实数根.
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
将转化为分段函数,进而分别判断.
= ,
当b>0时,结合一元二次方程根与系数的关系,可判断y=,在(-,0 )上是增函数,y=,在[0,+)上是增函数,且x=0时,函数图象连续,故f(x)在R上是单调增函数.故①正确;
当b<0时,f(x)的值域是R,没有最小值,故②错误;
若f(x)=|x|x+bx,f(-x)=-f(x),故函数f(x)是奇函数,即函数f(x)的图象关于(0,0)对称.而函数f(x)=|x|x+bx+c的图象是由函数f(x)=|x|x+bx的图象向上(下)平移个单位 ,故图象一定是关于(0,c)对称的,故③正确;
令b=-2,c=0,则f(x)=|x|x-2x=0,解得x=0,2,-2.所以④正确.
故选C.
练习册系列答案
相关题目