题目内容
已知动点到点的距离与到直线的距离之比为定值,记的轨迹为.
(1)求的方程,并画出的简图;
(2)点是圆上第一象限内的任意一点,过作圆的切线交轨迹于,两点.
(i)证明:;
(ii)求的最大值.
(1)求的方程,并画出的简图;
(2)点是圆上第一象限内的任意一点,过作圆的切线交轨迹于,两点.
(i)证明:;
(ii)求的最大值.
(1),C的图象是椭圆.
(2)(i) 。(ii)当过点时取最大值2
(2)(i) 。(ii)当过点时取最大值2
试题分析:(1)设,由题动点M满足: 1分
其中:,
...2分
代入,化简得:
C的图象是椭圆,如图所示. 4分
(2)(i)设,
则 5分
6分
即 7分
(ii)解法一、设切线为,由题与圆相切,得,
8分
再由,得 9分
10分
由(i)知,所以
11分
又 . 2分
,当时,取最大值2 13分
的最大值为2. ...14分
解法二、
由(i)同理得,则
又
当过点时取最大值2
点评:中档题,求椭圆的标准方程,主要运用了椭圆的几何性质,a,b,c,e的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。涉及弦长问题,一般要利用韦达定理,简化解题过程。本题“几何味”较浓,应认真分析几何特征。
练习册系列答案
相关题目