题目内容
(选修4-4:坐标系与参数方程) (本小题满分10分)
在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.
23(本小题满分10分)
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
24.(本小题满分10分)
将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.
(Ⅰ)若该硬币均匀,试求与;
(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较与的大小.
解:(Ⅰ)即
(Ⅱ),即
由于,故可设是上述方程的两实根,
所以故|PA|+|PB|==
23证明:则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0).
(Ⅰ),因为,
所以CM⊥SN
(Ⅱ),设a=(x,y,z)为平面CMN的一个法向量,
则 因为,
所以SN与平面CMN所成角为45°
24.解:(Ⅰ)抛硬币一次正面向上的概率为,所以正面向上的次数为奇数次的概率为
故
(Ⅱ)因为,
,则
,而,∴ ,∴
练习册系列答案
相关题目