题目内容
【题目】在极坐标系中,曲线的极坐标方程为,以极点为原点,以极轴所在直线为轴建立直角坐标系,曲线分别与轴正半轴和轴正半轴交于点,,为直线上任意一点,点在射线上运动,且.
(1)求曲线的直角坐标方程;
(2)求点轨迹围成的面积.
【答案】(1)(2).
【解析】
(1)根据极坐标与平面直角坐标之间的关系即可求解.
(2)由(1)知,,则可求直线的极坐标方程为,在极坐标系中,设,,则,点在直线上,代入与Q点关系即可得到Q的轨迹方程,化简并转化为直角坐标方程可得轨迹为圆,求圆面积即可.
(1)∵,∴.
由得,
∴曲线的直角坐标方程.
(2)由(1)知,,
则直线的直角坐标方程为,
极坐标方程为.
在极坐标系中,设,,则.
∵点在直线上,∴,
∴,
即,即.
∴点轨迹的直角坐标方程为,
即,
∴点的轨迹为半径为的圆,圆的面积为.
练习册系列答案
相关题目
【题目】汽车是碳排放量比较大的行业之一,欧盟规定,从2015年开始,将对排放量超过130g/km的型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类型品牌抽取5辆进行排放量检测,记录如下(单位:g/km):
甲 | 80 | 110 | 120 | 140 | 150 |
乙 | 100 | 120 | x | y | 160 |
经测算发现,乙品牌车排放量的平均值为.
(Ⅰ)从被检测的5辆甲类品牌中任取2辆,则至少有一辆排放量超标的概率是多少?
(Ⅱ)若乙类品牌的车比甲类品牌的的排放量的稳定性要好,求x的范围.