题目内容
【题目】在数列中,,且.
(1)的通项公式为__________;
(2)在、、、、这项中,被除余的项数为__________.
【答案】
【解析】
(1)根据题意得知数列为等差数列,确定该数列的首项和公差,可求出数列的通项公式,即可求出;
(2)设,可得出,由为奇数,可得出为的倍数或为的奇数倍且为偶数,求出两种情况下值的个数,相加即可得出答案.
(1)且,
所以,数列是以为首项,以为公差的等差数列,
,;
(2)被整除且余数为的整数可表示为,
令,可得,
,且,则为奇数,
则为的倍数,或者为的奇数倍且为偶数.
当为的倍数时,的取值有:、、、、,共个;
当为的奇数倍且为偶数时,的取值有:、、、、,共个.
综上所述,在、、、、这项中,被除余的项数为.
故答案为:;.
【题目】已知,. 对于函数、,若存在常数,,使得,不等式都成立,则称直线是函数与的分界线.
(1)讨论函数的单调性;
(2)当时,试探究函数与是否存在“分界线”?若存在,求出分界线方程;若不存在说明理由.
【题目】空气质量指数是反映空气质量状况的指数,指数值越小,表明空气质量越好,其对应关系如表:
指数值 | ||||||
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
如图是某市10月1日—20日指数变化趋势:
下列叙述正确的是( )
A.该市10月的前半个月的空气质量越来越好
B.这20天中的中度污染及以上的天数占
C.这20天中指数值的中位数略高于100
D.总体来说,该市10月上旬的空气质量比中旬的空气质量差
【题目】一个调查学生记忆力的研究团队从某中学随机挑选100名学生进行记忆测试,通过讲解100个陌生单词后,相隔十分钟进行听写测试,间隔时间(分钟)和答对人数的统计表格如下:
时间(分钟) | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
答对人数 | 98 | 70 | 52 | 36 | 30 | 20 | 15 | 11 | 5 | 5 |
1.99 | 1.85 | 1.72 | 1.56 | 1.48 | 1.30 | 1.18 | 1.04 | 0.7 | 0.7 |
时间与答对人数的散点图如图:
附:,,,,,对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:,.请根据表格数据回答下列问题:
(1)根据散点图判断,与,哪个更适宣作为线性回归类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果,建立与的回归方程;(数据保留3位有效数字)
(3)根据(2)请估算要想记住的内容,至多间隔多少分钟重新记忆一遍.(参考数据:,)