题目内容
()(1)求的定义域;(2)问是否存在实数、,当时,的值域为,且 若存在,求出、的值,若不存在,说明理由.
(1)(2)
解析
(本题满分16分)定义在的函数(1)对任意的都有;(2)当时,,回答下列问题:①判断在的奇偶性,并说明理由;②判断在的单调性,并说明理由;③若,求的值.
(本题满分12分)若定义在上的函数同时满足下列三个条件:①对任意实数均有成立;②; ③当时,都有成立。(1)求,的值;(2)求证:为上的增函数(3)求解关于的不等式.
(12分)已知(1)求函数在[t,t+2](t>0)上的最小值(2)对一切恒成立,求实数a的取值范围。
求函数的定义域和値域.
已知定义域为R的函数是奇函数。(1)求的值;(2)用定义证明在上为减函数;(3)若对于任意,不等式恒成立,求的取值范围。
某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.(1)求该月需用去的运费和保管费的总费用(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.
.(12分)已知函数在R上为奇函数,,.(I)求实数的值;(II)指出函数的单调性.(不需要证明)(III)设对任意,都有;是否存在的值,使最小值为;
(本小题满分13分)设函数.(1)求证:不论为何实数总为增函数;(2)确定的值,使为奇函数及此时的值域.