题目内容
已知函数
(n∈N+),且y=f(x)的图象经过点(1,n2),数列{an}(n∈N+)为等差数列.(1)求数列{ an}的通项公式;
(2)当n为奇函数时,设
,是否存在自然数m和M,使不等式m<
<M恒成立,若存在,求出M-m的最小值;若不存在,说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044289796.gif)
(2)当n为奇函数时,设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044336635.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044351317.gif)
(1) an=2n-1 (2) M-m的最小值为2.
(1)据题意:f(1)=n2 即
令n="1" 则a0+a1=1,a1=1-a0 令n="2" 则a0+a1+a2=22,a2=4-(a0+a1)=4-1=3
令n="3" 则a0+a1+a2+a3=32,a3=9-(a0+a1+a2)="9-4=5" ∵{an}为等差数列
∴d=a3-a2="5-3=2 " a1="3-2=1 " a0="0 " an=1+(n-1)·2=2n-1
(2)由(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044398742.gif)
n为奇数时,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044429873.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231150444451529.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231150444761474.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231150445231810.gif)
相减得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231150445391712.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044570976.gif)
令
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044601826.gif)
.
∴Cn+1≤Cn,Cn随n增大而减小 又
随n增大而减小
∴g(
)为n的增函数,当n=1时,g(
)=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044663226.gif)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044757629.gif)
∴使m<g(
)<M恒成立的自然m的最大值为0,M最小值为2. M-m的最小值为2.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044367612.gif)
令n="1" 则a0+a1=1,a1=1-a0 令n="2" 则a0+a1+a2=22,a2=4-(a0+a1)=4-1=3
令n="3" 则a0+a1+a2+a3=32,a3=9-(a0+a1+a2)="9-4=5" ∵{an}为等差数列
∴d=a3-a2="5-3=2 " a1="3-2=1 " a0="0 " an=1+(n-1)·2=2n-1
(2)由(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044398742.gif)
n为奇数时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044429873.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231150444451529.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231150444761474.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231150445231810.gif)
相减得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231150445391712.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044570976.gif)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044585574.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044601826.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044632373.gif)
∴Cn+1≤Cn,Cn随n增大而减小 又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044648486.gif)
∴g(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044663226.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044663226.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044663226.gif)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044726915.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044757629.gif)
∴使m<g(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115044663226.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目