题目内容
【题目】设,
(1)求的单调区间和最小值;
(2)讨论与的大小关系;
(3)求a的取值范围,使得对任意成立.
【答案】(1)见解析;(2)见解析;(3).
【解析】
(1)利用导数先求出函数的单调区间,即得函数的最小值;
(2)构造函数设,求出函数的单调性,分类讨论即得解;
(3)根据(1)可得不等式等价于,解不等式即得解.
(1)由题设知,,
∴,令得,
当时,,故是的单调减区间.
当时,,故是的单调递增区间,
因此,是的唯一极值点,且为极小值点,从而是最小值点,所以最小值为.
(2),
设,则,
因此,在内单调递减,
当时,,即,
当时,,即.
当时,,即.
综上:当时, ;
当时, ;
当时,即.
(3)由(1)知的最小值为1,
∴,对任意成立等价于,即.
∴.
【题目】随着移动支付的普及,中国人的生活方式正在悄然发生改变,带智能手机而不带钱包出门渐渐成为中国人的新习惯.在调查“现金支付,银联卡支付,手机支付”三种支付方式中“最常用的支付方式”这个问题时,在中国某地,从20岁到40岁人群中随机抽取55人,从40岁到60岁人群随机抽取45人,进行答题.20岁到40岁人群的支付情况是选择现金支付的占、银联卡支付的占、手机支付的占.40岁到60岁人群的支付情况是:现金支付的占、银联卡支付的占、手机支付的占.
(1)请根据以上调查结果将下面列联表补充完整;并判断至多有多少把握认为支付方式与年龄有关;
手机支付 | 其他支付方式 | 合计 | |
20岁到40岁 | |||
40岁到60岁 | |||
合计 |
(2)商家为了鼓励使用手机支付规定手机支付打9折,其他支付方式不打折.现有一物品售价100元,以样本中支付方式的频率估计一件产品支付方式的概率,假设购买每件物品的支付方式相互独立.求4件此种物品销售额的数学期望.
附:,其中.
0.40 | 0.25 | 0.15 | 0.10 | 0.050 | 0.025 | 0.01 | |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.636 |
【题目】共享单车的投放,方便了市民短途出行,被誉为中国“新四大发明”之一.某市为研究单车用户与年龄的相关程度,随机调查了100位成人市民,统计数据如下:
不小于40岁 | 小于40岁 | 合计 | |
单车用户 | 12 | y | m |
非单车用户 | x | 32 | 70 |
合计 | n | 50 | 100 |
(1)求出列联表中字母x、y、m、n的值;
(2)①从此样本中,对单车用户按年龄采取分层抽样的方法抽出5人进行深入调研,其中不小于40岁的人应抽多少人?
②从独立性检验角度分析,能否有以上的把握认为该市成人市民是否为单车用户与年龄是否小于40岁有关.
下面临界值表供参考:
P() | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6635 | 7.879 | 10.828 |