题目内容
【题目】已知函数f(x)=ax2+2x+c(a、c∈N*)满足:①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若对任意的实数x∈[ , ],都有f(x)﹣2mx≤1成立,求实数m的取值范围.
【答案】
(1)解:∵f(1)=a+2+c=5,
∴c=3﹣a.①
又∵6<f(2)<11,即6<4a+c+4<11,②
将①式代入②式,得﹣ <a< ,又∵a、c∈N*,∴a=1,c=2
(2)解:由(1)知f(x)=x2+2x+2.
证明:∵x∈[ , ],∴不等式f(x)﹣2mx≤1恒成立2(1﹣m)≤﹣(x+ )在[ , ]上恒成立.
易知[﹣(x+ )]min=﹣ ,
故只需2(1﹣m)≤﹣ 即可.
解得m≥
【解析】(1)把条件①f(1)=5;②6<f(2)<11代入到f(x)中求出a和c即可;(2)不等式f(x)﹣2mx≤1恒成立2(1﹣m)≤﹣(x+ )在[ , ]上恒成立,只需要求出[﹣(x+ )]min=﹣ ,然后2(1﹣m)≤﹣ 求出m的范围即可.
练习册系列答案
相关题目