题目内容

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和最低点分别为(x0 , 2),(x0+ ,﹣2).
(1)求函数y=f(x)的解析式和单调递增区间;
(2)若当0≤x≤ 时,方程f(x)﹣m=0有两个不同的实数根α,β,试讨论α+β的值.

【答案】
(1)解:由题意可得:A=2,

由在y轴右侧的第一个最高点和最低点分别为(x0,2),(x0+ ,﹣2),可得:

=(x0+ )﹣x0= ,可得:T=π,

∴ω=2,可得:f(x)=2sin(x+φ),

又∵图象与y轴的交点为(0,1),可得:2sinφ=1,解得:sinφ=

∵|φ|< ,可得:φ=

∴函数f(x)的解析式为:f(x)=2sin(2x+

由2kπ﹣ ≤2x+ ≤2kπ+ ,k∈Z,可得:kπ﹣ ≤x≤kπ+ ,k∈Z,

可解得f(x)的单调递增区间是:[kπ﹣ ,kπ+ ],k∈Z


(2)解:如图所示,在同一坐标系中画出y=2sin(2x+ )和y=m(m∈R)的图象,

由图可知,当﹣2<m≤0或1≤m<2时,直线y=m与曲线有两个不同的交点,即原方程有两个不同的实数根,

当﹣2<m≤0时,两根和为

当1≤m<2时,两根和为


【解析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由图象与y轴的交点为(0,1)求出φ的值,可得函数的解析式,利用正弦函数的单调性可求单调递增区间;(2)在同一坐标系中画出y=2sin(2x+ )和直线y=m(m∈R)的图象,结合正弦函数的图象的特征,数形结合求得实数m的取值范围和这两个根的和.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网