题目内容

在平面直角坐标系xOy中,已知点A(-1,1),P是动点,且△POA的三边所在直线的斜率满足kOP+kOA=kPA.

(1)求点P的轨迹C的方程;
(2)若Q是轨迹C上异于点P的一个点,且=λ,直线OP与QA交于点M,问:是否存在点P,使得△PQA和△PAM的面积满足S△PQA=2S△PAM?若存在,求出点P的坐标;若不存在,说明理由.
(1)y=x2(x≠0且x≠-1)(2)(1,1)
(1)设点P(x,y)为所求轨迹上的任意一点,则由kOP+kOA=kPA
整理得轨迹C的方程为y=x2(x≠0且x≠-1).

(2)设P(x1),Q(x2,M(x0,y0),
=λ可知直线PQ∥OA,则kPQ=kOA,故,即x2+x1=-1,
由O、M、P三点共线可知,=(x0,y0)与=(x1)共线,
∴x0-x1y0=0,由(1)知x1≠0,故y0=x0x1
同理,由=(x0+1,y0-1)与=(x2+1,-1)共线可知(x0+1)(-1)-(x2+1)(y0-1)=0,即(x2+1)[(x0+1)·(x2-1)-(y0-1)]=0,
由(1)知x2≠-1,故(x0+1)(x2-1)-(y0-1)=0,
将y0=x0x1,x2=-1-x1代入上式得(x0+1)(-2-x1)-(x0x1-1)=0,
整理得-2x0(x1+1)=x1+1,由x1≠-1得x0=-,由S△PQA=2S△PAM,得到QA=2AM,
∵PQ∥OA,∴OP=2OM,∴=2,∴x1=1,∴P的坐标为(1,1)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网