题目内容
【题目】某公司为了解某产品的获利情况,将今年1至7月份的销售收入(单位:万元)与纯利润(单位:万元)的数据进行整理后,得到如下表格:
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售收入 | 13 | 13.5 | 13.8 | 14 | 14.2 | 14.5 | 15 |
纯利润 | 3.2 | 3.8 | 4 | 4.2 | 4.5 | 5 | 5.5 |
该公司先从这7组数据中选取5组数据求纯利润关于销售收入的线性回归方程,再用剩下的2组数据进行检验.假设选取的是2月至6月的数据.
(1)求纯利润关于销售收入的线性回归方程(精确到0.01);
(2)若由线性回归方程得到的估计数据与检验数据的误差均不超过0.1万元,则认为得到的线性回归方程是理想的.试问该公司所得线性回归方程是否理想?
参考公式:,,,;参考数据:.
【答案】(1);(2)是
【解析】
(1)先求出,的平均数,再根据公式求出回归方程;
(2)根据所求出的回归方程,依次检验1,7两月的数据误差是否超过0.1,即可下结论.
(1),
,
,
.
故纯利润关于销售收入的线性回归方程是.
(2)当时,,;
当时,,.
故该公司所得线性回归方程是理想的.
【题目】某部门经统计,客户对不同款型理财产品的最满意程度百分比和对应的理财总销售量(万元)如下表(最满意度百分比超高时总销售量最高):
产品款型 | A | B | C | D | E | F | G | H | I | J |
最满意度% | 20 | 34 | 25 | 19 | 26 | 20 | 19 | 24 | 19 | 13 |
总销量(万元) | 80 | 89 | 89 | 78 | 75 | 71 | 65 | 62 | 60 | 52 |
设表示理财产品最满意度的百分比,为该理财产品的总销售量(万元).这些数据的散点图如图所示.
(1)在份款型理财产品的顾客满意度调查资料中任取份;只有一份最满意的,求含有最满意客户资料事件的概率.
(2)我们约定:相关系数的绝对值在以下是无线性相关,在以上(含)至是一般线性相关,在以上(含)是较强线性相关,若没有达到较强线性相关则采取“末位”剔除制度(即总销售量最少的那一款产品退出理财销售);试求在剔除“末位”款型后的线性回归方程(系数精确到).
数据参考计算值:
项目 |
|
|
|
| ||
值 | 21.9 | 72.1 | 288.9 | 37.16 | 452.1 | 17.00 |
附:回归直线方程的斜率和截距的最小二乘法估计分别为:
线性相关系数 .
【题目】郑汴一体化是依托郑州省会城市资源优势发展开封的省级战略,实施至今,取得了一系列的成就:两城电信同价,金融同城,郑开大道全线贯通,城际列车实常态化运营.随着郑汴一体化的深入推进,很多人认为郑州开封未来有望合并.为了解市民对郑汴合并的态度,现随机抽查55人,结果按年龄分类统计形成如下表格:
支持 | 反对 | 合计 | |
不足35岁 | 20 | ||
35岁以上 | 30 | ||
合计 | 25 | 55 |
(1)请完成上面的2×2列联表,并判断是否有99.5%的把握认为市民对郑汴合并的态度与年龄有关?
(2)在上述样木中用分层抽样的方法,从攴持郑汴合并的两组市民中随机抽取6人作进一步调查,从这6人中任选2人,求恰有1位“不足35岁”的市民和1位“35岁及以上”的市民的概率.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.814 | 5.024 | 7.879 | 10.828 |
【题目】已知椭圆:的焦距为,点在椭圆上,且的最小值是(为坐标原点).
(1)求椭圆的标准方程.
(2)已知动直线与圆:相切,且与椭圆交于,两点.是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.
【题目】已知椭圆:的焦距为,点在椭圆上,且的最小值是(为坐标原点).
(1)求椭圆的标准方程.
(2)已知动直线与圆:相切,且与椭圆交于,两点.是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.
【题目】党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间的为优等品;指标在区间的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,各自随机抽取100件作为样本进行检测,测试指标结果的频数分布表如下:
甲种生产方式:
指标区间 | ||||||
频数 | 5 | 15 | 20 | 30 | 15 | 15 |
乙种生产方式:
指标区间 | ||||||
频数 | 5 | 15 | 20 | 30 | 20 | 10 |
(1)在用甲种方式生产的产品中,按合格品与优等品用分层抽样方式,随机抽出5件产品,①求这5件产品中,优等品和合格品各多少件;②再从这5件产品中,随机抽出2件,求这2件中恰有1件是优等品的概率;
(2)所加工生产的农产品,若是优等品每件可售55元,若是合格品每件可售25元.甲种生产方式每生产一件产品的成本为15元,乙种生产方式每生产一件产品的成本为20元.用样本估计总体比较在甲、乙两种不同生产方式下,该扶贫单位要选择哪种生产方式来帮助该扶贫村来脱贫?