题目内容

【题目】△ABC的内角A、B、C的对边分别为a、b、c,已知2a= csinA﹣acosC.
(1)求C;
(2)若c= ,求△ABC的面积S的最大值.

【答案】
(1)∵2a= csinA﹣acosC,

∴由正弦定理可得:2sinA= sinCsinA﹣sinAcosC,

∵sinA≠0,

∴可得:2= sinC﹣cosC,解得:sin(C﹣ )=1,

∵C∈(0,π),可得:C﹣ ∈(﹣ ),

∴C﹣ = ,可得:C=


(2)∵由(1)可得:cosC=﹣

∴由余弦定理,基本不等式可得:3=b2+a2+ab≥3ab,即:ab≤1,(当且仅当b=a时取等号)

∴SABC= absinC= ab≤ ,可得△ABC面积的最大值为


【解析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin(C﹣ )=1,结合C的范围,可得C的值.(2)由余弦定理,基本不等式可求ab≤1,进而利用三角形面积公式可求△ABC面积的最大值.
【考点精析】通过灵活运用正弦定理的定义和余弦定理的定义,掌握正弦定理:;余弦定理:;;即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网