题目内容

已知A、B是椭圆
x2
4
+
y2
3
=1
的左、右顶点,椭圆上异于A、B的两点C、D和x轴上一点P,满足
AP
=
1
3
AD
+
2
3
AC

(1)设△ADP、△ACP、△BCP、△BDP的面积分别为S1、S2、S3、S4,求证:S1S3=S2S4
(2)设P点的横坐标为x0,求x0的取值范围.
(1)证明:∵
AP
=
1
3
AD
+
2
3
AC
,∴
AP
=
1
3
AD
+(1-
1
3
)
AC

AP
-
AC
=
1
3
AD
-
AC
),
CP
=
1
3
CD

∴C、D、P三点共线,且C、D在P点的两侧,
∵△ADP、△ACP、△BCP、△BDP的面积分别为S1、S2、S3、S4
S1
S2
=
|
CP
|
|
PD
|
=
S4
S3
,∴S1S3=S2S4
(2)由(Ⅰ)知,C、D、P三点共线,且C、D在P点的两侧,且C、D异于A、B的两点,
∴-2<x0<2,且直线CD不平行于x轴,
设直线CD的方程为:x=my+x0
x=my+x0
x2
4
+
y2
3
=1
,得:(3m2+4)y2+6mx0y+3x02-12=0,
当-2<x0<2时,直线与椭圆有两个交点,
设C(x1,y1),D(x2,y2),
∴y1+y2=-
6mx0
3m2+4
,y1y2=
3x02-12
3m2+4

CP
=
1
3
CD
,∴y2=-2y1
联立三式,消去y1、y2得:-
72m2x02
(3m2+4)2
=
3x02-12
3m2+4

化简得:(27x02-12)m2=4(4-x02),
∵-2<x0<2,m2>0,∴27x02-12>0,
所以x0
2
3
或x0<-
2
3

综上知x0的取值范围是(-2,-
2
3
)∪(
2
3
,2).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网