题目内容
【题目】已知函数与的图象关于轴对称,当函数和在区间同时递增或同时递减时,把区间叫做函数的“不动区间”.若区间为函数的“不动区间”,则实数的取值范围是( )
A. B. C. D.
【答案】C
【解析】
若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则函数f(x)=|2x﹣t|和函数F(x)=|﹣t|在[1,2]上单调性相同,则(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,进而得到答案.
∵函数y=f(x)与y=F(x)的图象关于y轴对称,
∴F(x)=f(﹣x)=|2﹣x﹣t|,
∵区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,
∴函数f(x)=|2x﹣t|和函数F(x)=|2﹣x﹣t|在[1,2]上单调性相同,
∵y=2x﹣t和函数y=2﹣x﹣t的单调性相反,
∴(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,
即1﹣t(2x+2﹣x)+t2≤0在[1,2]上恒成立,
即2﹣x≤t≤2x在[1,2]上恒成立,
即≤t≤2,
故答案为:C
练习册系列答案
相关题目
【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(1)求出y关于x的线性回归方程;
(2)试预测加工10个零件需要多少小时?
(注:=,=-b)