题目内容
【题目】已知点为圆上任意一点,点,线段的中垂线交于点.
(1)求动点的轨迹方程;
(2)若动直线与圆相切,且与动点的轨迹交于点、,求面积的最大值(为坐标原点).
【答案】(1);
(2).
【解析】
(1)由题意可得则由椭圆的定义可得轨迹方程.
(2)先考虑动直线斜率存在时,设为y=kx+m与椭圆方程联立,由直线l与圆O相切,利用根的判别式求出k与m的关系,由弦长公式、三角形面积公式,结合换元法利用二次函数求最值的方法能求出△OEF面积的最大值,再考虑斜率不存在时,可直接求得点的坐标,求得面积,比较后得到结论.
(1)由题知,
的轨迹是以、为焦点的椭圆,其方程为.
(2)①当的斜率存在时.设 的方程为
由得:
可得 与圆相切,
从而,
令,得
.
当且仅当即时取等号.
.
②当的斜率不存在时.易得的方程为或.此时
.
由①②可得:的最大值为.
【题目】下列说法正确的是( )
A.若为真命题,则,均为假命题;
B.命题“若,则”的逆否命题为真命题;
C.等比数列的前项和为,若“”则“”的否命题为真命题;
D.“平面向量与的夹角为钝角”的充要条件是“”
【题目】随着手机的发展,“微信”逐渐成为人们交流的一种形式,某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如表:
年龄(单位:岁) |
| |||||
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 5 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年龄55岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99.9%的把握认为“使用微信交流”的态度与人的年龄有关;
年龄不低于55岁的人数于 | 年龄低于55岁的人数 | 合计 | |
赞成 | |||
不赞成 | |||
合计 |
(2)若从年龄在的被调查人中随机选取2人进行追踪调查,求2人中至少有1人赞成“使用微信交流”的概率.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.