题目内容
【题目】在平面直线坐标系中,定义为两点的“切比雪夫距离”,又设点P及上任意一点Q,称的最小值为点P到直线的“切比雪夫距离”记作给出下列四个命题:( )
①对任意三点A、B、C,都有
②已知点P(3,1)和直线则
③到定点M的距离和到M的“切比雪夫距离”相等点的轨迹是正方形;
④定点动点满足则点P的轨迹与直线(为常数)有且仅有2个公共点。
其中真命题的个数是( )
A.4B.3C.2D.1
【答案】A
【解析】
①讨论,,三点共线,以及不共线的情况,结合图象和新定义,即可判断;
②运用新定义,求得点的轨迹方程,即可判断;
③设点是直线上一点,且,可得,,讨论,的大小,可得距离,再由函数的性质,可得最小值;
④讨论在坐标轴上和各个象限的情况,求得轨迹方程,即可判断.
解:①对任意三点、、,若它们共线,设,、,,
,,如右图,结合三角形的相似可得,,
为,,,或,,,则,,,;
若,或,对调,可得,,,;
若,,不共线,且三角形中为锐角或钝角,由矩形或矩形,
,,,;
则对任意的三点,,,都有,,,;故①正确;
②到原点的“切比雪夫距离”等于1的点,即为,,若,则;
若,则,故所求轨迹是正方形,则②正确;
③设点是直线上一点,且,
可得,,
由,解得,即有,
当时,取得最小值;
由,解得或,即有,
的范围是,,,.无最值,
综上可得,,两点的“切比雪夫距离”的最小值为.
故③正确;
④定点、,动点
满足,,,
可得不轴上,在线段间成立,
可得,解得,
由对称性可得也成立,即有两点满足条件;
若在第一象限内,满足,,,
即为,为射线,
由对称性可得在第二象限、第三象限和第四象限也有一条射线,
则点的轨迹与直线为常数)有且仅有2个公共点.
故④正确;
故选:
【题目】某商店为迎接端午节,推出两款粽子:花生粽和肉粽.为调查这两款粽子的受欢迎程度,店员连续10天记录了这两种粽子的销售量,如下表表示(其中销售单位:个)
天数 销售量 天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
花生粽 | 103 | 93 | 98 | 93 | 106 | 86 | 87 | 94 | 91 | 99 | 100 |
肉粽 | 88 | 97 | 98 | 95 | 101 | 98 | 103 | 106 | 103 | 111 | 100 |
(1)根据两组数据完成下面茎叶图:
(2)统计学知识,请评述哪款粽子更受欢迎;
(3)求肉粽销售量y关于天数t的线性回归方程,并预估第15天肉粽的销售量(回归方程系数精确到0.1)
参考数据:,参考公式: