题目内容

设过抛物线的焦点F的弦PQ,则以PQ为直径的圆与抛物线准线的位置关系是(   )
A.相交  B.相切
C.相离D.以上答案均有可能
B
解:设PQ的中点是M,M到准线的距离是d.
而P到准线的距离d1=|PF|,Q到准线的距离d2=|QF|.
又M到准线的距离d是梯形的中位线,故有d="(|PF|+|QF|" )/2 ="|PQ|" /2 .
即圆心M到准线的距离等于半径|PQ|/ 2 ,
所以圆与准线是相切.
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网