题目内容

【题目】函数f(x)=a|log2x|+1(a≠0),定义函数F(x)= ,给出下列命题:
①F(x)=|f(x);
②函数F(x)是偶函数;
③当a<0时,若0<m<n<1,则有F(m)﹣F(n)<0成立;
④当a>0时,函数y=F(x)﹣2有4个零点.
其中正确命题的序号为

【答案】②③④
【解析】解:解:(1)∵函数f(x)=a|log2x|+1(a≠0),定义函数F(x)=

对于①,∴|f(x)|=|a|log2x|+1|,∴F(x)≠|f(x)|;故①不错;

对于②,F(x)= ═F(x)∴函数F(x)是偶函数;故②正确,

对于③,∵当a<0时,若0<m<n<1,∴|log2m|>|log2n|

∴a|log2m|+1>a|log2n|+1,即F(m)<F(n)成立;故F(m)﹣F(n)<0成立;所以③正确;

对于④,∴x>0时,F(x)在(0,1)单调递减,(1,+∞)单调递增,∴x>0时,F(x)的最小值为F(1)=1,

故x>0时,F(x)与y=﹣2有2个交点,∵函数F(x)是偶函数,∴x<0时,F(x)与y=﹣2有2个交点

故当a>0时,函数y=F(x)﹣2有4个零点.所以④正确,

所以答案是:②③④

【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网