题目内容
【题目】在边长为的等边三角形中,点分别是边上的点,满足且,将沿直线折到的位置. 在翻折过程中,下列结论成立的是( )
A.在边上存在点,使得在翻折过程中,满足平面
B.存在,使得在翻折过程中的某个位置,满足平面平面
C.若,当二面角为直二面角时,
D.在翻折过程中,四棱锥体积的最大值记为,的最大值为
【答案】D
【解析】
利用反证法可证明A、B错误,当且二面角为直二面角时,计算可得,从而C错误,利用体积的计算公式及放缩法可得,从而可求的最大值为,因此D正确.
对于A,假设存在,使得平面,
如图1所示,
因为平面,平面平面,故,
但在平面内,是相交的,
故假设错误,即不存在,使得平面,故A错误.
对于B,如图2,
取的中点分别为,连接,
因为为等边三角形,故,
因为,故
所以均为等边三角形,故,,
因为,,,故共线,
所以,因为,故平面,
而平面,故平面平面,
若某个位置,满足平面平面,则在平面的射影在上,也在上,故在平面的射影为,所以,
此时,这与矛盾,故B错误.
对于C,如图3(仍取的中点分别为,连接)
因为,所以为二面角的平面角,
因为二面角为直二面角,故,所以,
而,故平面,因平面,故.
因为,所以.
在中,,
在中,,故C错.
对于D,如图4(仍取的中点分别为,连接),
作在底面上的射影,则在上.
因为,所以且,所以其.
又
,
令,则,
当时,;当时,.
所以在为增函数,在为减函数,故.
故D正确.
故选:D.
练习册系列答案
相关题目